Name:

The Molecular Basis of Inheritance

• Define the following terms, **IN YOUR OWN WORDS, IN AS FEW WORDS AS CLARITY ALLOWS**.

complementary base pairing	
purines	
pyrimidines	
replication	
mRNA	
transcription	
codon	
rRNA	
tRNA	
anticodon	
polysome	
recombinant DNA	
mutagens	
translation	
ribosome	
Genetic Code	
All nucleotides are made of	the following three parts:
In RNA, the base	is replaced with the base

Mix and match the following bases with their correct partner for base pairings: (2)

1.	purine	Α	adenine
2.	pyrimidine	В	cytosine
3.	adenine	С	guanine
4.	guanine	D	purine
5.	cytosine	Е	uracil
6.	thymine	F	thymine
7.	uracil	G	pyrimidine

List 3 differences in structure in RNA, compared to the structure of DNA.

1.	
2.	
3.	

Fill in the following table: (3)

	to relieving rapie: (e)								
DNA									
mRNA	G	G	U	G	U	Α	Α	U	U
anticodon									
amino acid									

Protein is produced during the process called parts:			This process has three ma		
Three m	nutagens are:				

Put phrases 1 - 6 in the correct order to describe protein synthesis:

- 1. mRNA is produced in the nucleus
- 2. ribosomes move along mRNA
- 3. DNA has a code
- 4. polypeptide results
- 5. tRNA brings amino acids to ribosomes
- 6. mRNA moves to ribosomes

- 1. The adjacent nucleotides in DNA are bonded to each other by
- a. covalent bonds.

c. ionic bonds.

b. hydrogen bonds.

- d. peptide bonds
- 2. The **nitrogenous base** in **DNA** are bonded to each other by
- a. covalent bonds.

c. ionic bonds.

b. hydrogen bonds.

d. peptide bonds.

Use the table below to answer questions 3 and 4. mRNA Sequence: **CUC-AAG-UGC-UUC**

AAU - Asparagina AAC -	CAU Histidine	GAU Asparatic acid	UAU Tyrosine
AAA AAG Lysine	CAA Glutamine	GAA Glutamate	UAA Stop
ACU ACC ACA ACG	CCU CCC CCA CCG	GCU GCC GCA GCG	UCU UCC UCA UCG
AGU Serine AGC Arginine	CGU CGC CGA CGG	GGU GGC GGA GGG	UGU Cysteine UGC Stop UGA — Stop UGG — Tryptophan
AUU AUC Isoleucine AUA AUG — Methionine	CUU CUC CUA CUG	GUU GUC GUA GUG	UUU Phenylalanine UUA Leucine

3. Table of Codons above

Which of the following would represent **the sequence of DNA** from which the mRNA sequence was made?

- a. CUC-AAG-UGC-UUC
- c. GAG-TTC-ACG-AAG
- b. GAG-UUC-ACG-AAG

d. AGA-CCT-GTA-GGA

4. Table of Codons above

The anticodons for the codons in the mRNA sequence above are

ANATOMY & PHYSIOLOGY 12

a. GAG-UUC-ACG-AAG.

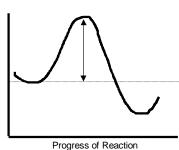
b. GAG-TTC-ACG-AAG.

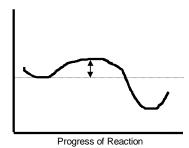
CH. 3,4 and 6 REVIEW

c. CUC-GAA-CGU-CUU.

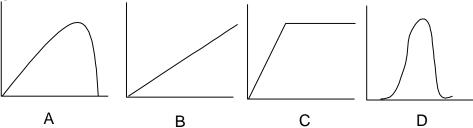
d. CUU-CGU-GAA-CUC.

- 5. The two chains of the DNA molecule are held together by
- a. covalent bonds.
- b. hydrogen bonds.
- c. ionic bonds.
- d. peptide bonds.
- 6. A section of one **DNA** strand has the sequence **ACCGAGGTT**. What is the sequence of an **tRNA** anticodons from this section of DNA?
- a. ACCGAGGUU
- b. ACCGAGGTT
- c. TGGCTCCAA
- d. UGGCUCCAA


Part A: Define the following terms in your own word. Be clear and concise!


COLICISC:	
Metabolism	
Substrate	
Enzyme	
active site	
Coenzyme	
metabolic	
pathway	
activation	
energy	

Label the parts on this diagram.


1	
1	
2	
3	
4	

1. Label all missing parts on the graphs to the right. **Highlight the** energy of activation on both graphs.

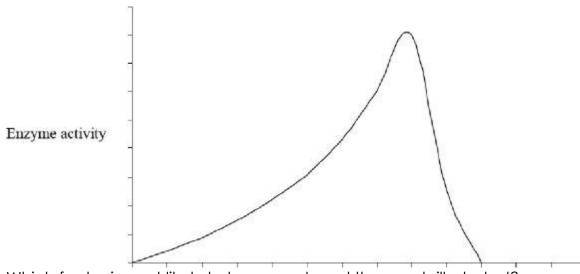
- 2. Which graph below best represents a graph of the enzyme activity vs pH? Explain what is occurring at each portion of the graph.
- 3. Which graph below best represents a graph of the enzyme activity vs temperature? Explain what is occurring at each portion of the graph.

Part C: Answer on separate sheets of paper, in your own words.

- What advantages can you see in having complex metabolic pathways within body cells to produce various substances, such as amino acids and ATP?
- 2. How does the "Lock and Key" theory of enzyme action differ from the "Induced Fit" theory? Use diagrams to help your explanation.
- 3. Why do you think each enzyme has its own preferred pH at which it operates?

- 4. What is the effect of lowering the temperature on enzyme activity. How about raising the temperature? Draw a graph to show these relationships.
- 5. Describe three factors that can lead to the denaturing of enzymes. How would denaturing an enzyme affect its activity?

Part D: Multiple choice.


- 1. When the substrate binds to the enzyme, the active site undergoes a slight alteration to achieve the best fit. This is known as the _____ model. (p. 109)
- a. fit-to-be-tied
- b. lock-and-key
- c. deduced-fit
- d. induced-fit
- e. reduced-fit
- 2. Compounds that are needed for enzymes to function properly are
- a. heavy metals.

c. steroids.

b. vitamins.

d. buffers.

3. The graph below illustrates the effect of a factor on enzyme activity.

Which factor is most likely to have produced the graph illustrated?

- a. Substrate concentration
- c. Time
- b. Product concentration
- d. Temperature

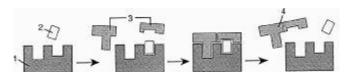
- 4. The area of an enzyme into which a substrate fits is called the
- a. catalyst.

c. activated complex.

b. product.

d. active site.

5. Which of the following situations in an enzyme-catalyzed reaction will produce the **most** product at the **fastest** rate?


produce	broaded me mest preader at me lastest rate:				
	Concentration of	Concentration of			
	Substrate	Enzyme			
1	Low	Low			
2	Low	High			
3	High	Low			
4	High	High			
	O I- 1	- 4 1 0			

a. 3

b. 1

c. 4

d. 2

- 6. In the reaction shown, which number represents a coenzyme?
- a. 4

c. 3

b. 2

d. 1

- 7. The energy that is released from ATP when ATP is broken down comes from the _____.
- a. hexose sugar
- b. thymine nucleotide
- c. phosphate group
- d. adenine nucleotide
- e. ribose sugar